Measuring the Social Return of Higher Education

鄭泊聲、倪楷恩、陳致宇、白崇佑

國立台灣大學

May 27, 2022

1 The Idea

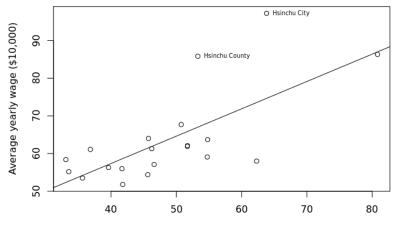
- 2 Cross Sectional MLR College Worker Share City Higher Education Level
- Instrumental Variable
- 2018-2020 Panel Data First Differenced Random Effect
- 5 1982-2020 Time Series Data Model 1 Model 2 Model 3 Detrending

External versus Internal

- Government subsides for higher education is high. Is this justified?
- Basic demand and supply model tells us: government subside for external benefits maximize welfare.
- How can we measure the external benefits?
 - Education increases personal wage, but that's **internal**.
 - How about average wage in regions with different amount of higher education? This might include **external** effect.

Much of this work is based on Moretti 2004.

Data and Variables


- Wage data: a data based on workplace (instead of household) location city average wage data calculated by DGBAS. Only 2018-2020.
- Education data: How to measure "the amount of higher education"?
 - No. of college gradutes in city¹
 - Share of college level worker in city workforce²
 - City population education level above college share ³
- Other city characteristic data as controls

²縣市重要統計指標查詢系統, DGBAS

³人口統計資料, Dept. of Household Registration

¹Depart. of Statistics, Ministry of Education

2020 City Data

Share of college worker (%)

5/6

1 The Idea

- Cross Sectional MLR College Worker Share City Higher Education Level
- 3 Instrumental Variable
- 4 2018-2020 Panel Data First Differenced Random Effect
- 5 1982-2020 Time Series Data Model 1 Model 2 Model 3 Detrending

Model Specification

Dependent variable is city wage at 2020, *wage*2020. The full MLR model is

$$wage2020 = \beta_0 + workforceCollege_2020 + \beta \mathbf{X} + u$$
 (1)

with *workforceCollege*_2020, the share of college educated worker in city workforce, as main explanatory. **X** is a vector containing various city characteristic, including

- direct: a dummy for the 6 Special Municipality
- *directEdu*2020: a interaction term between *direct* and *workforceCollege*_2020 to allow different slope.

All variables

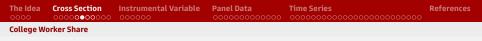
Table: MLR on all variables

	Dependent variable:	eduLevel2020	1.866 (1.746)
	wage2020		
workforceCollege_2020	-0.818 (1.814)	married2020	1.504 (1.141)
direct	81.297** (23.442)	expensePerCapita2020	0.003*** (0.001)
hired2020	1.486** (0.608)	unemployment2020	-31.468 (21.214)
manufecture2020	-2.045** (0.850)	directEdu2020	-1.531*** (0.416)
service2020	-1.049 (0.915)	Constant	268.635 (171.289)
gender2020	2.499 ^{**} (0.994)	Observations R ²	20 0.959
eduExpense2020	1.162* (0.572)	Adjusted R ² Residual Std. Error F Statistic	0.888 4.055 (df = 7) 13.604*** (df = 12; 7)
		Note:	*p<0.1; **p<0.05; ***p<0.01

Joint significance of education

	Dependent variable:
	wage2020
workforceCollege_2020	0.946
	(1.231)
eduExpense2020	0.650
	(0.530)
eduLevel2020	-0.333
	(1.259)
Constant	9.424
	(18.926)
Observations	20
R ²	0.525
Adjusted R ²	0.436
Residual Std. Error	9.118 (df = 16)
F Statistic	5.889*** (df = 3; 16)
Note:	*p<0.1; **p<0.05; ***p<0.0

College Worker Share


Cross Sectional MLR College Worker Share City Higher Education Lev

Instrumental Variable

2018-2020 Panel Data First Differenced Random Effect

🕒 1982-2020 Time Series Data

Model 1 Model 2 Model 3 Detrending

The Model

We take only reasonable and strong variables to form a compelling model as

wage2020 = $\beta_0 + \beta_1$ workforceCollege_2020 + δ_0 direct + β_2 wage2018 + β_3 manufecture2020 + β_4 hired2020 (2)

- *wage*2018: a lagged dependent as proxy to most of the city characteristics
- manufecture2018 is the share of manufecturing industry in gross production, *hired*2020 is the share of workforce classified as hired (instead of being employer or self-employed)

Table:

College Worker Share

MLR

	Dependent variable:
	wage2020
workforceCollege_2020	0.075**
	(0.029)
direct	-0.194
difect	(0.413)
	(0.415)
wage2018	1.017***
	(0.021)
(0.025
manufecture2020	0.025
	(0.022)
hired2020	-0.032
	(0.038)
Constant	-1.259
	(2.005)

Observations	20
R ²	0.998
Adjusted R ²	0.997
Residual Std. Error	0.689 (df = 14)
F Statistic	1,175.873*** (df = 5; 14)
Note:	*p<0.1; **p<0.05; ***p<0.01

College Worker Share

Heteroskedasticity Robust

Breusch-Pagan test: BP = 10.854, df = 5, p-value = 0.05435

	Dependent variable:
	wage2020
workforceCollege_2020	0.080***
	(0.013)
direct	0.020
	(0.240)
wage2018	0.997***
Wagezoio	(0.011)
manufecture2020	0.009
manarcetarezozo	(0.022)
hired2020	-0.034
IIIIeuzozo	(0.042)
Constant	0.290
	(1.613)

_			
	21	0	
	JL		

Observations	20
R ²	0.998
Adjusted R ²	0.998
Residual Std. Error	0.474 (df = 14)
Note:	*p<0.1; **p<0.05; ***p<0.01

2 Cross Sectional MLR College Worker Share City Higher Education Level

Instrumental Variable

2018-2020 Panel Data First Differenced Random Effect

😏 1982-2020 Time Series Data

Model 1 Model 2 Model 3 Detrending

Table:

MLR

	Dependent variable:
	wage2020
direct	-0.322
	(0.421)
manufecture2020	0.022
	(0.020)
- dut	0 071 **
eduLevel2020	0.071**
	(0.026)
hired2020	-0.012
	(0.033)
wage2018	1.015***
wagez016	(0.021)
	(0.022)
Constant	-1.967
	(1.876)

Observations	20
R ²	0.998
Adjusted R ²	0.997
Residual Std. Error	0.677 (df = 14)
F Statistic	1,220.078*** (df = 5; 14)
Note:	*p<0.1; **p<0.05; ***p<0.01

Measuring the Social Return of Higher Education

City Higher Education Level

Heteroskedasticity Robust

Breusch-Pagan test: BP = 11.97, df = 5, p-value = 0.0352

Dependent variable:
wage2020
-0.107
(0.213)
0.008
(0.021)
0.080***
(0.015)
-0.017
(0.041)
0.992***
(0.009)
-0.248
(1.673)

Observations	20
R ²	0.999
Adjusted R ²	0.998
Residual Std. Error	0.372 (df = 14)
Note:	*p<0.1; **p<0.05; ***p<0.01

1 The Idea

2 Cross Sectional MLR College Worker Share City Higher Education Level

Instrumental Variable

- 4 2018-2020 Panel Data First Differenced Random Effect
- 5 1982-2020 Time Series Data Model 1 Model 2 Model 3 Detrending

IV: Lagged Age Structure

Important criteria for an IV, z

- cov(x, z) ≠ 0: As proportion of college gradutes in population grows in time, younger workforce may have more college graduates than older one.
- *cov*(*u*, *z*) = 0: Wage is unlikely to be correlated with age.

We use the lagged share of worker aged 15-24, *workforceYoung_*2010, as the IV.

First Stage

With a t-Statistic of -2.199, this choice of IV may not be strong enough.

	Dependent variable:
	workforceCollege_2020
workforceYoung_2010	-5.845**
	(2.658)
Constant	91.140***
	(19.525)
Observations	20
R ²	0.212
Adjusted R ²	0.168
Residual Std. Error	10.578 (df = 18)
F Statistic	4.835** (df = 1; 18)
Note:	*p<0.1; **p<0.05; ***p<0.01

2SLS - College Share

	Dependent variable:
	wage2020
workforceCollege_2020	0.098
	(0.103)
direct	-0.308
	(0.650)
wage2018	1.007***
	(0.049)
manufecture2020	0.035
	(0.048)
hired2020	-0.050
	(0.087)
Constant	-0.643
	(3.368)

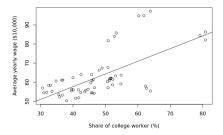
Observations	20
R ²	0.998
Adjusted R ²	0.997
Residual Std. Error	0.704 (df = 14)
Wald test	1125 on 5 and 14 DF, p-value: < 2.2e-16

2SLS - Edu Level

	Dependent variable:
	wage2020
eduLevel2020	0.097
	(0.101)
direct	-0.505
	(0.820)
wage2018	1.002***
	(0.054)
manufecture2020	0.033
	(0.045)
hired2020	-0.026
	(0.063)
Constant	-1.483
	(2.668)

Observations	20
R ²	0.998
Adjusted R ²	0.997
Residual Std. Error	0.700 (df = 14)
Wald test	1138 on 5 and 14 DF, p-value: < 2.2e-16

Main Takeaway


- Choosing either share of college worker or share of college city population as main independent yield similar results.
- Either way they have significant positive effect.
- A lagged dependent variable is very explanatory.
- IV analysis suggest that actual effect may be even larger.

1 The Idea

- 2 Cross Sectional MLR College Worker Share City Higher Education Level
- B Instrumental Variable
- 4 2018-2020 Panel Data First Differenced Random Effect
- 5 1982-2020 Time Series Data Model 1 Model 2 Model 3 Detrending

Panel Data

- Same data from 2018-2020.
- Model are specified the same except the the lagged dependent is removed.
- We used an unobserved effect panel data model.

2018-2020 City Data

First Differenced

2 Cross Sectional MLR

College Worker Share City Higher Education Level

🟮 Instrumental Variable

4 2018-2020 Panel Data First Differenced Random Effect

互 1982-2020 Time Series Data

Model 1 Model 2 Model 3 Detrending **First Differenced**

First Differenced HAC

	Dependent variable:
	wageDiff
workforceCollegeDiff	-0.109
	(0.086)
direct2	0.341
unectz	
	(0.283)
serviceDiff	0.358***
ServiceBill	(0.103)
	(0.105)
manufectDiff	-0.028
	(0.133)
hiredDiff	-0.092
	(0.120)
	. ,
Constant	0.671***
	(0.141)

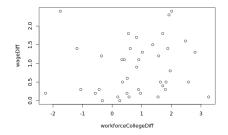
Observations	40
R ²	0.279
Adjusted R ²	0.173
Residual Std. Error	0.601 (df = 34)
Note:	*p<0.1; **p<0.05; ***p<0.01

First Differenced

First Differenced with IV

Table:

	Dependent variable:
	wageDiff
workforceCollegeDiff	0.223
	(1.203)
direct2	0.294
directi	(0.433)
serviceDiff	0.073
	(0.816)
manufectDiff	-0.073
manarecebin	(0.140)
hiredDiff	-0.067
	(0.143)
Constant	0.558
constant	(0.552)
	/


Observations	40
R ²	0.024
Adjusted R ²	-0.119
Residual Std. Error	0.748 (df = 34)
Note:	*p<0.1; **p<0.05; ***p<0.01

27/6

Very large standard error in first differencing estimation may

be caused by very small variation in explanatory variable.

So we turned to random effect estimator.

Random Effect

2 Cross Sectional MLR

College Worker Share City Higher Education Level

🟮 Instrumental Variable

4 2018-2020 Panel Data First Differenced Random Effect

互 1982-2020 Time Series Data

Model 1 Model 2 Model 3 Detrending **Table:**

Random Effect

Random Effect

	Dependent variable:
	wage2018
workforceCollege_2018	0.403*** (0.114)
manufecture2018	0.122 (0.127)
hired2018	-0.010 (0.169)
direct	-8.666 (10.479)
directEdu2018	0.098 (0.187)
expensePerCapita2018	0.001 ^{***} (0.0002)
Constant	24.754 ^{**} (10.832)

	Dependent variable:
	wage2018
orceCollege_2018	0.403***
	(0.114)
fecture2018	0.122
Tecture2016	(0.122)
	(0.127)
2018	-0.010
	(0.169)
	-8.666
	(10.479)
Edu2018	0.098
2010	(0.187)
	(0.167)
sePerCapita2018	0.001***
	(0.0002)
ant	24.754**

Observations	60
R ²	0.539
Adjusted R ²	0.487
F Statistic	62.031***
Note:	*p<0.1; **p<0.05; ***p<0.01

Measuring the Social Return of Higher Education

Random Effect

RE with IV - First Stage

The IV in even less significant here.

	Dependent variable:
	workforceCollege_2018
workforceYoung_2013	0.082
	(0.584)
Constant	47.100***
	(4.891)
Observations	60
R ²	0.0003
Adjusted R ²	-0.017
F Statistic	0.020
Note:	*p<0.1; **p<0.05; ***p<0.01

Table:

Random Effect

RE with IV - 2SLS

	Dependent variable:
	wage2018
workforceCollege_2018	1.776 (7.636)
manufecture2018	0.585 (2.097)
hired2018	0.850 (4.705)
direct	35.758 (264.171)
directEdu2018	0.853 (5.534)
expensePerCapita2018	0.0003 (0.003)
Constant	21.315 (22.243)

Observations R ²	60 0.352
Adjusted R ² F Statistic	0.279 17.148***
Note:	*p<0.1; **p<0.05; ***p<

Measuring the Social Return of Higher Education

- Random effect estimation gives a larger significant coefficient than cross sectional OLS.
- IV using RE also suggest a even larger causal effect.

Other Panel Data Methods

- We find Fixed Effect results vary similar to RE. This can also be seen by the close to one $\hat{\theta}$.
- Pooling independent method finds only the effect of industry structure, *manufecture*2018, has a significant coefficient of 0.4280.

	var	std.dev	share
idiosyncratic	0.5627	0.7501	0.015
individual	37.9300	6.1587	0.985

 $\hat{\theta}$ = 0.9299

Table: Random effect estimation (without IV)

Remarks

- Our panel data analysis requires strict exogeneity, for which we kind of take it for granted.
- The *R*² in our RE estimation is only 0.487, which definitely leaves room for improvement.

1 The Idea

- 2 Cross Sectional MLR College Worker Share City Higher Education Level
- 3 Instrumental Variable
- 2018-2020 Panel Data First Differenced Random Effect

互 1982-2020 Time Series Data

Model 1 Model 2 Model 3 Detrending

Data

- Between 1982-2020
- National data
- Due to data limitation, after some test we decided to choose:
 - Average household income (*income*_t) as the dependent variable.
 - **Government education budget** (*edufund*_t) as the main explanatory variable.

Autoregression

- We find *income*_t and *income*_{t-1} to be highly correlated with 0.9975 correlation.
- So we perform first differencing on all variable and define

$$cincome_t = income_t - income_{t-1}$$
 (3)

1 The Idea

2 Cross Sectional MLR

College Worker Share City Higher Education Level

Instrumental Variable

4 2018-2020 Panel Data First Differenced Random Effect

5 1982-2020 Time Series Data

Model 1 Model 2 Model 3 Detrending

Model 1 Specification

cincome = cincome_lag + cedufund + cunem

+ cindpd + cavgGDP (4)

- *cincome_lag* in a 2 periods lag term of the dependent.
- cedufund is our main explanatory.
- *cunem* refers to unemployment rate.
- *cindpd* is the gross production of manufecturing industry, in million NTD.
- *cavgGDP* is the average GDP per capita.

Model 1 Results

Table: First Differenced MLR

	Dependent variable:
	cincome[3:38]
cincome_lag	0.555***
	(0.121)
cedufund[3:38]	0.0001**
	(0.00003)
cunem[3:38]	-8,050.278***
	(1,597.252)
cindpd[3:38]	-0.001
	(0.001)
cavgGDP[3:38]	0.149**
5	(0.061)
Constant	178.333
	(1,437.168)

Observations	36
R ²	0.744
Adjusted R ²	0.702
Residual Std. Error	3,445.707 (df = 30)
F Statistic	17.451 ^{***} (df = 5; 30)
Note:	*p<0.1; **p<0.05; ***p<0.01

Serial Correlation

Define u_t as the residuals of the previous model.

	Dependent variable:
	ut
ut_1	0.023
	(0.194)
Constant	-52.015
	(553.908)
Observations	35
R ²	0.0004
Adjusted R ²	-0.030
Residual Std. Error	3,265.292 (df = 33)
F Statistic	0.014 (df = 1; 33)
Note:	*p<0.1; **p<0.05; ***p<0.01

Table:

Our model doesn't seem to be affected by SC.

Heteroskedasticity

Breusch-Pagan test: BP = 5.4892, df = 5, p-value = 0.3591 Our model doesn't seem to be affected by heteroskedasticity.

1 The Idea

2 Cross Sectional MLR

College Worker Share City Higher Education Level

🟮 Instrumental Variable

4 2018-2020 Panel Data First Differenced Random Effect

😏 1982-2020 Time Series Data

Model 1 Model 2 Model 3 Detrending

Model 2 Specification

 $cincome = cincome_lag + cedufund + cunem + cindpd + cindpd_lag + cavgGDP$ (5)

- *cincome_lag* is a 2 periods lag term of the dependent.
- *cedufund* is our main explanatory.
- *cunem* refers to unemployment rate.
- *cindpd* is the gross production of manufecturing industry, in million NTD.
- *cindpd_lag* is a 1 period lag term of *cindpd*.
- *cavgGDP* is the average GDP per capita.

Model 2 Results

Table: First Differenced MLR model 2

	Dependent variable:
	cincome[3:38]
cincome_lag	0.553***
	(0.112)
cedufund[3:38]	0.0001***
	(0.00003)
cunem[3:38]	-9,850.055***
	(1,643.410)
cindpd[3:38]	-0.001*
	(0.001)
cindpd_lag	-0.001^{**}
	(0.001)

cavgGDP[3:38]	0.077 (0.063)
Constant	2,159.014 (1,548.312)
Observations R ²	36 0.789
Adjusted R ² Residual Std. Error F Statistic	0.745 3,182.269 (df = 29) 18.079*** (df = 6; 29)
Note:	*p<0.1; **p<0.05; ***p<0.01

Serial Correlation

Define u_t as the residuals of the previous model.

	Dependent variable:
	ut
ut_1	0.019
	(0.198)
Constant	-43.651
	(503.820)
Observations	35
R ²	0.0003
Adjusted R ²	-0.030
Residual Std. Error	2,967.877 (df = 33)
F Statistic	0.009 (df = 1; 33)
Note:	*p<0.1; **p<0.05; ***p<0.01

Table:

Our model doesn't seem to be affected by SC.

Heteroskedasticity

Breusch-Pagan test: BP = 5.3746, df = 6, p-value = 0.4967 Our model doesn't seem to be affected by heteroskedasticity.

Model 3

1 The Idea

2 Cross Sectional MLR

College Worker Share City Higher Education Level

Instrumental Variable

4 2018-2020 Panel Data First Differenced Random Effect

😏 1982-2020 Time Series Data

Model 1 Model 2 Model 3 Detrending

Model 3 Specification

cincome = cincome_lag + cedufund + cunem

+ cservpd + cavgGDP (6)

- *cincome_lag* in a 2 periods lag term of the dependent.
- cedufund is our main explanatory.
- *cunem* refers to unemployment rate.
- *cservpd* is the gross production of service industry, in million NTD.
- *cavgGDP* is the average GDP per capita.

Model 3 Results

Table: First Differenced MLR model 3

	Dependent variable:
	cincome[3:38]
cincome_lag	0.729***
	(0.126)
cedufund[3:38]	0.0001**
	(0.00003)
cunem[3:38]	-9,225.299***
	(1,609.773)
cservpd[3:38]	-0.009**
	(0.004)
cavgGDP[3:38]	0.201***
carges: [5:56]	(0.063)
Constant	1,517.859
	(1,488.989)

Observations	36
R ²	0.774
Adjusted R ²	0.737
Residual Std. Error	3,235.215 (df = 30)
F Statistic	20.602*** (df = 5; 30)
Note:	*p<0.1; **p<0.05; ***p<0.01

Serial Correlation

Define u_t as the residuals of the previous model.

	Dependent variable:
	ut
ut_1	0.119
	(0.181)
Constant	-19.639
	(517.243)
Observations	35
R ²	0.013
Adjusted R ²	-0.017
Residual Std. Error	3,055.879 (df = 33)
F Statistic	0.435 (df = 1; 33)
Note:	*p<0.1; **p<0.05; ***p<0.01

Table:

Our model doesn't seem to be affected by SC.

Heteroskedasticity

Breusch-Pagan test: BP = 10.115, df = 5, p-value = 0.07205 Our model doesn't seem to be affected by heteroskedasticity.

Takeaways

- All 3 models yields similar results.
- Government education budget has a positive, significant, but small effect.
- The models are free from heteroskedasticity and serial correlation.
- *R*²s lies in the 0.7 range, still room for improvement.
- The main explanatory accounts for all education level, not just higher.
- The dependent also doesn't directly indicate wage.

Comparisons

In comparison to our cross sectional analysis,

- TS obtains smaller coefficient,
- TS models have lower R².

In comparison to our panel analysis,

- TS obtains smaller coefficient,
- TS models have higher R².

From several models using cross section, panel, time series methods, we find (higher)education does have a positive effect on average wage. How much the effect is distributed to the external is beyond the scope of this work.

Detrending

2 Cross Sectional MLR

College Worker Share City Higher Education Level

🕄 Instrumental Variable

4 2018-2020 Panel Data First Differenced Random Effect

互 1982-2020 Time Series Data

Model 1 Model 2 Model 3 Detrending

Detrending MLR

Table:

	Dependent variable:
	income
edufund	0.0003***
	(0.00002)
unem	-4.634.824***
unem	(1.311.579)
	()/
indpd	-0.004^{***}
	(0.001)
avgGDP	0.275***
avgobi	(0.066)
t	-2,095.528
	(1,398.582)
Constant	32,611.320***
	(5,618.118)

Observations	39
R ²	0.996
Adjusted R ²	0.995
Residual Std. Error	6,269.286 (df = 33)
F Statistic	1,575.655*** (df = 5; 33)
Note:	*p<0.1; **p<0.05; ***p<0.01

Detrended AR

First, we obtain the detrended variables \ddot{y}_t by regressing

$$\mathbf{y}_t = \alpha_0 + \alpha_1 t + \mathbf{e}_t \tag{7}$$

and specify $\ddot{y_t} = e_t$. Subsequently, we found detrended *income*_t highly correlated to *income*_{t-1} with correlation 0.9570. So we performed first differencing and define

$$cincome_dt_t = income_t - income_{t-1}$$
 (8)

FD Detrending MLR

Then the regression result is **exactly the same** as the non-detrending FD MLR (in table 16).

	Dependent variable:
	cincome_dt[4:38]
cincome_dt[2:36]	0.558***
	(0.122)
cedufund_dt[4:38]	0.0001**
	(0.00003)
cunem_dt[4:38]	-8,154.249***
	(1,623.290)
cindpd_dt[4:38]	-0.001
	(0.001)
cavgGDP_dt[4:38]	0.154**
	(0.062)
Constant	152.261
	(602.216)

Observations	35
R ²	0.741
Adjusted R ²	0.696
Residual Std. Error	3,482.437 (df = 29)
F Statistic	16.602 ^{***} (df = 5; 29)
Note:	*p<0.1; **p<0.05; ***p<0.01

Measuring the Social Return of Higher Education

Detrending

SC, Heteroskedasticity and Our Question

- Serial correlation and heteroskedasticity result are also the same.
- So, is detrending redundant after first-differencing?

Reference I

[1] Enrico Moretti. "Estimating the social return to higher education: evidence from longitudinal and repeated cross-sectional data". In: Journal of Econometrics 121.1 (2004). Higher education (Annals issue), pp. 175–212. ISSN: 0304-4076. DOI: https: //doi.org/10.1016/j.jeconom.2003.10.015. URL: https://www.sciencedirect.com/science/ article/pii/S0304407603002653.